
Scaling in Laminar Natural Convection in Laterally Heated Cavities
— Is Turbulence Essential in the Classical Scaling of Heat Transfer?

Natural convection in a gravitational field is ubiquitous
in nature and in many important technological systems
and has been the subject of extensive studies in theory,
experiments and numerical simulations (cf., reviews [1]
and references therein). In addition to its importance in
oceanography, geophysics, meteorology, astrophysics, en-
ergy systems and process technologies, Rayleigh-Benard
convection (RBC), a special form of natural convection
driven by a vertical temperature gradient, is also a clas-
sic system for the study of buoyancy-induced turbulence.
One of the most dramatic discoveries from classical ex-
periments on this system in the turbulent convection
regime is the (effective) power law dependencies of heat
transport on dimensionless buoyancy forcing with scaling
exponents between 1/4 and 1/3 [2]. Significant effort,
both numerically and experimentally, has been directed
at the mechanisms and detailed scaling behavior of tur-
bulent RBC.

Another configuration, natural convection driven by
a horizontal temperature gradient, is just as important
in practical applications but has received much less at-
tention from the physics community. It is mostly se-
lected as a validation problem to compare numerical al-
gorithms designed for solving the Navier-Stokes or Boltz-
mann equations, or for turbulence modeling and compu-
tation. Theoretical, numerical and experimental work
on this system has investigated flow patterns, tempera-
ture distributions, flow instabilities, etc., mostly focusing
more on the transition to unsteady flow or the effects of
aspect ratio on heat transfer at moderately high Ra.

We demonstrate that natural convection in these two
configurations share some important characteristics. Al-
though the flow regimes can be very different in that one
is completely laminar whereas the other is governed, at
least in the bulk, by strong turbulent fluctuations, the
heat transfer scaling with forcing is very similar.

Natural convection is characterized by the Rayleigh
number Ra = gα∆Td3/νκ and the Prandtl number
Pr = ν/κ with g the acceleration of gravity, α the ther-
mal expansion coefficient, ∆T the applied temperature
difference, d the distance along the temperature gradi-
ent, and ν and κ the kinematic viscosity and thermal
diffusivity, respectively. The global response to buoyant
forcing is measured by the thermal diffusion normalized
heat transfer called the Nusselt number Nu, the mean (or
max) flow velocity u and the associated inertia to dissi-
pation ratio called Reynolds number, Re = ud/ν. The
last is for turbulent convection only.

In this study, we numerically investigate in detail
power-law scaling of Nu on Ra in laminar convection
subject to horizontal temperature gradient that is nearly
identical to the classic scaling in turbulent RBC. Based
on detailed examinations we find that the existence of

a large-scale circulation (LSC) and the resultant bound-
ary layers and interior temperature distribution is suf-
ficient to produce the classic near 1/3 power-law scal-
ing. We thus conjecture that (1) although turbulence
produces rich non-universal flow dynamics it has little
effect on the global heat transfer. (2) Similar near 1/3
power-law scaling is a universal characteristic for ther-
mal convection and should exist in different flow regimes
in all closed cavities with various temperature gradient
arrangements. (3) Side-heated and tilted cavities may
provide alternative routes to study the effects of turbu-
lence on heat transfer in natural convection.

We perform simulations of the dimensionless Boussi-
nesq equations in a square two-dimensional cavity (Γ =
1) with Pr =0.71. The boundary conditions are hot
(Θh = 0.5) at the left wall, cold (Θl = −0.5) at the
right wall, and adiabatic at the top and bottom bound-
aries. All four boundaries are non-slip. Initially, we set
~v = Θ = 0 everywhere within the cavity so that the flow
is driven only by the buoyant force.

Two important properties for convective flow are Nu,
which measures the enhancement of heat transfer by con-
vection over conduction, and vmax, the maximum veloc-
ity amplitude in the field. The former is computed by
Nu =

∫ 1

0
(uΘ − ∂Θ

∂x )|xdz where the first term is the con-
tribution from heat convection and the second is from
heat conduction. By definition Nu = 1 for conduction.
We compute Nu at x = 0.5 although any value of x
within the width from 0 to 1 gives the same Nu.
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FIG. 1: Stationary temperature contours at Ra numbers (a)
10, (b) 103, (c) 105, (d) 107. Color coded temperature scale
is shown on right.

Stationary temperature contours at different Ra are
shown in Fig. 1. At low Ra(= 10), the temperature
gradient is distributed nearly uniformly over the whole
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field in the horizontal direction. Convection is weak and
conduction dominates heat transfer. As Ra increases to
about 103, buoyant forces becomes stronger and convec-
tion starts to play a role. The temperature distribution is
deformed, and boundary layers begin to form along both
sides. As Ra increases to 105, boundary layers are well
developed and the fluid becomes thermally stratified. At
this stage, heat transfer within the thin boundary lay-
ers is dominated by conduction and by convection out-
side. For Ra & 107, the flow is further stratified and the
boundary layers become very thin.

Quantitative measurements yield the dependence of
Nu and vmax on Ra, see Figs. 2a,b. Two stages in
the laminar flow regime are captured. At low Ra,
Nu remains approximately unity indicating that con-
duction dominates. The growth of vmax is linear in
Ra. In the second stage, both vmax and Nu exhibit
power-law growth. The velocity magnitude scales as
vmax ∼ 0.14Ra0.54, close to the experimental measure-
ment [3] for turbulent RBC where the the scaling expo-
nent for the velocity is 0.49. The dependence of Nu on
Ra, Nu ∼ 0.13Ra0.31, shows excellent correspondence
with turbulent RBC results with similar scaling expo-
nent. This scaling exponent is consistent with previous
numerical results [5] but is interpreted here in a new way.

The dependency of heat transfer Nu on cavity aspect-
ratio Γ is computed in the range of Γ = 0.5 − 20 at
constant Ra. Nu monotonically decreases from 5 at Γ =
0.5 to 2.4 at Γ = 20, in qualitative agreement with the
classical experimental data [4].
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FIG. 2: Power-law scalings as a function of Ra. (a). Heat
transfer Nu; (b). Maximum velocity magnitude vmax; (c)
Mean inverse boundary layer thickness for velocity (dots) and
temperature (circles).

As mentioned above, the power-law scaling (Nu ∼
Raβ) of large Ra number RBC has been well investi-
gated. Experimental data reveal power law dependen-
cies of β = 0.25 ∼ 0.33, see Table 1 of reference [1].
Generally in turbulent RBC, mixing length theories pre-

dicts Nu ∼ Ra1/3 for Pr & 0.1 [1] by supposing that
the heat conduction is confined to the regions near the
heated (or cooled) plates and that the two boundary lay-
ers don’t communicate. From more general considera-
tions, one gets a complicated diagram of regions with
different power-law scalings for Nu between 1/4 and 1/2
[2] depending on the Ra and Pr numbers so that there
may not be a pure power-law for experiments that cross
over from one region to another [6]. In a recent Nature
article [7], Niemela et al reported the experimental mea-
surement of Nu = 0.124Ra0.309 in the broadest range of
Ra, from 106 to 1017, using cryogenic helium gas near its
critical point. This is remarkably close to the numerical
result here (0.13Ra0.31) over a wide range of Ra.

We further characterize the boundary layer thickness
development in the laminar convection flow regime. We
define the x-location of maximum vertical velocity mag-
nitude (w) as the VBL thickness λv(z) and the x-location
of the intersept of the slope of temperature gradient
at the hot wall with the corresponding stratified tem-
perature line as the TBL thickness λΘ(z) = (Θh −
Θ|(0.5,z))/∂Θ

∂x |(0,z).
Figure 2c shows the mean inverse VBL and TBL thick-

nesses computed as λ−1
v =

∑
z(1/λv(z)) and λ−1

Θ =∑
z(1/λΘ(z)) for different Ra. First, λv < λΘ for

all Ra’s, which is true for the Pr < 1 case. Sec-
ond, according to the analysis above, after the fluid be-
comes stratified, heat transfer near the side boundaries
is dominated by conduction. Therefore, the growth of
Nu should be roughly proportional to λ−1

Θ . Comparing
Nu ∼ 0.13Ra0.31 in Fig. 2a with λ−1

Θ ∼ 0.30Ra0.29 in
Fig. 2c we confirm this prediction (λ−1

Θ ∼ 2Nu noticing
the total TBL thickness is 2λΘ). It is seen that Nu grows
slightly faster than λ−1

Θ . This is because that convection
still makes a small contribution even in the boundary
layers. Last and most importantly, the demonstration of
boundary layer effects on the flow in different Ra ranges
in turn helps in understanding the flow physics. For low
Ra, the VBL and the TBL are not meaningful. The com-
puted TBL is essentially half of the cavity width. After
the flow starts to stratify, the VBL and the TBL form
and begin to dominate heat transfer. The reduction of
the boundary layer thickness follows a power law. As
Ra reaches about 5× 107, the flow becomes time depen-
dent and perhaps turbulent, and the computation of the
thickness of TBL and VBL can no longer utilize the same
approach. Experimental measurement of thermal bound-
ary layer thickness in turbulence gas convection driven
by sidewall heating, defined as the position at which the
temperature rms is maximum, shows the scaling with
Ra to have an exponent of 0.29 in the range of Ra from
5×105 to 1011, which is in agreement with the numerical
results here. This is identical to that found in RBC with
a slightly larger prefactor [9].

Figure 3 zooms in on the growth of Nu at very low
Ra(< 103). After a short rounded region where Nu ∼
Ra2, Nu becomes linear in Ra. These two scalings were
predicted by Batchelor in 1954 [8]. We extract a thresh-
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old Rayleigh number Rat analogous to the critical Rac

in RBC through the extrapolation of the linearity to the
base value of Nu = 1 for pure conduction. This thresh-
old Rat characterizes the onset of significant convection
influence on the heat transfer. It is found that Rat is
nearly independent of the cavity aspect-ratio.
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FIG. 3: Threshold Rat through extrapolation of the linear
region to the base value of conduction, Nu = 1.

In what follows, we perform an analysis [10] analo-
gous to RBC to interpret the near 1/3 power-law of
Nu. For Ra < Rat, see Figs. 1 and 2, buoyancy
induced flow is very weak and heat transfer is domi-
nated by conduction. When Ra exceeds Rat, convec-
tion starts to dominate the heat transfer. Large scale
shear flow forms as Ra reaches around 105. At this
stage, the core region is stratified with large convec-
tive flow transporting heat, and there is effectively no
temperature gradient horizontally. All significant hori-
zontal temperature gradients are in two boundary lay-
ers with a total thickness λt(= 2λΘ). The conduc-
tion dominated boundary layer thickness may be deter-

mined by Rat = (gα∆Tλ3
t )/(νκ) whereas for the cavity

Ra = (gα∆TL3)/(νκ). Since the heat flux jh = κ∆T/λt

and conduction flux jc = κ∆T/L, by definition we have
Nu = jh/jc = L/λt = (Ra/Rat)1/3 = 0.13Ra1/3. This
result slightly over predicts Nu obtained from the simula-
tions. Following the same simple procedure for RBC, and
not using the marginal stability argument for the bound-
ary layer thickness, Nu = (Ra/Rac)1/3 = 0.084Ra1/3.
In addition, the natural existence of a LSC in the later-
ally heated cavities and the attainment of 0.31 power-law
nearly identical to that in RBC suggests the modification
of LSC to the 1/3 power-law may have some universal
features.

This work systematically examines the heat trans-
fer and flow properties in laminar natural convection
in laterally heated cavities with numerical simulations
and demonstrates the fundamental role of LSC in nat-
ural convection in closed cavities. The transition from
conduction-dominated heat transfer to a convection-
dominated regime, first proposed in the theoretical work
of Batchelor, is clearly analyzed. The resulting threshold
Rat, akin to the role of the critical Rac in RBC, is ex-
plored and used in the study of the transition to power
scaling in Nu, velocity, and thermal and viscous bound-
ary layers. Such scalings, all existing in laminar flow,
are found to be nearly identical to those in turbulent
RBC, prompting us to propose that LSC and the resul-
tant boundary layers and stratified interior are sufficient
to produce the classical near 1/3 (0.31) power-law scal-
ing for heat transfer in all natural convection in closed
cavities, and that the role of turbulence is not essential
in this regard. This work establishes a new paradigm in
the study of natural convection in closed cavities, and
offers alternative routes to study the effects of LSC and
turbulence.
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